

DRAFT

Bay-Delta Standards

DRAFT

Contained in D-1641

	65%						
4000 cfs	3000 cfs	4000 cfs					
3000 cfs	2000 cfs	3000 cfs					
	3000 cfs	4000 cfs					
	2000 cfs	3000 cfs					
		28 + TAF					
<= 250 mg/L Cl							
<= 150 mg/L CI for 240 days							
14 dm <= 0.45 mS/cm							
30-day running average EC <= 0.7 mS	30-day running average EC <= 1.0 mS						
		19.0 mS/cm					
	3000 cfs	3000 cfs 3000 cfs					

SRI (40-30-30 @ 50%) =10.0 (Wet)

SJV (60-20-20 @75%) =3.4 (Above Normal)

SWP & CVP CY 2000 Forecasted Operations.

Based on 08/16/00 SWP & 7/00 CVP operations studies. Flows are monthly averages. Actual through July. Assumes 90% exceedence hydrology for Aug-Sep 2000, and 75% for Oct-Dec 2000.

Year 2	000 SW	P and	CVP W	/ater S	Supply	Impa	ct and	Recov	ery Pl	an		
		Based on May 1 - 90% Exceedence Hydrology								Impact		
	Apr	May 1-15 N	May 16-31	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan-01	Summary
				SW	Р							
				b(2) - V	/QCP							
SWP Export Impacts (b(2) 2000)			-28 ³									-28
SWP delta smelt B.O. Export Impacts	-28 ¹	-32 ¹	-28 ³									-88
SWP Export Makeup (b(2) 2000)				28 4								28
SWP delta smelt B.O. Export Makeup				52 ⁴	7 5	17 ⁶	12 ⁶					88
Oroville Storage Changes	28 ²	13 ²	33 ³	4 4	-7 ⁵	-17 ⁶	-12 ⁶					42 8
Net Impacts												42
SWP Export from AFRP												
Negotiated 1999 SWP Makeup								35 ⁷	35 ⁷			70
				CV b(2) - V								
Cum. CVP Storage Changes (Oct - Jan)												-6
CVP Flow Impacts (FebSep)	-51	-9		-7	-3	-30	-24					-132 ⁵
CVP Export Impacts	-52	-52 -78		0	0	-6	0					-279 ⁹
Sub total												-417 ⁹
				WQCP -	Base							
Cum. CVP Storage Changes (Oct - Jan)												0 5
CVP Flow Impacts (FebSep)	-166	-13	7	13	-29	69	77					-175 ^S
CVP Export Impacts	-19	-25	5	6	27	-95	-102					-208 ⁹
Sub total												-383
Grand Total												-800
			CVP Water	Supply Au	gmentatio	n Actions	-			T	T	I
Potential Use for JPOD												0
Water Purchases south of the Delta					44	19	9					72

¹ Impacts for dropping SWP exports from 50% of Vernalis base flow (2367 cfs) to actual exports (1404 cfs) which averaged greater than the SWP share of the delta smelt biological opinion export objective (1165 cfs). Therefore there were no SWP impacts attributed to b(2) during the pulse flow period.

² Most of the reduced SWP exports were backed into Oroville. Approximately 19 taf of impact occurred during a period of surplus flows, (May 9 - 15), and were not backed upstream.

³ 56 taf of surplus flow was lost due to curtailments in the latter part of May. 28 taf was for a b(2) action. The other 28 taf was for export reductions associated with exceeding the delta smelt red-light salvage level. Some water was backed into Oroville in late May as result of the reduced pumping.

⁴ May b(2) impacts (28 taf), late May ESA impacts (28 taf) and some of the pulse flow period impacts (24 taf) were made up by pumping surplus CVP flows that resulted from CVP b(2) export curtailments in early June and by pumping greater than 35% E/I ratio (15 taf) in the end of June. Reduced pumping in the end of May resulted in a slight overall net increase in Oroville storage over the base case.

⁵ Approximately 7 taf of additional pulse flow export impact has been recovered in July by utilizing the 500 cfs increase at CCF intake. These additional exports are supported by additional Oroville releases of 7 taf plus an undetermined carriage water cost.

⁶ The remainer of pulse flow export impact (29 taf) is planned to be made up by utilizing the 500 cfs increase in August and September. These additional exports will be supported by additional Oroville releases that will include an undetermined amount of carriage water. 8 taf has been moved in August to date with an opportunity to move up to 17 taf total.

Additional SWP export supported by CVP upstream releases in October and November. The 70 taf was negotiated between DOI and DWR for 1999 make up.

⁸ Total Oroville storage increase will be somewhat less due to an undetermined amount of carriage water cost associated with moving water using the 500 cfs during the summer.

⁹ CVP b(2) impact summary is for the period Oct. '99 through Sep. '00.